

Realistic Automated Scenario Drilling Through Implementation and Validation of Physical and Machine Learning Models Using a Real-Time Drilling Simulator

Harits Alkatiri, Khizar Shahid, Joachim Oppelt, Leandro Zambeli (3t Drilling Systems Ltd.) German Research Center for High Performance Drilling and Automation – Drilling Simulator Celle

Clausthal University of Technology, Germany

Drilling Simulator Celle

on the basis of a decision by the German Bundestag

and Energy

Federal Ministry for Economic Affairs

Supported by:

Harits Alkatiri - 01.03.2024

Outline

Messe Offenburg – Ortenau

- Background
- Research Objectives
- Methodology
- Simulation and Evaluation
- Conclusions and Future Work

Background: Challenges in Drilling

- High cost in drilling an oil, gas, or geothermal well
- High non productive time (NPT) drilling time efficiency in certain drilling operations
- Automated drilling simulation to optimize the drilling process

Background: Factors of Inefficiency in Drilling

- Natural factors
- Technical factors
- Human resources
- Equipment availability

(DrillSim:600)

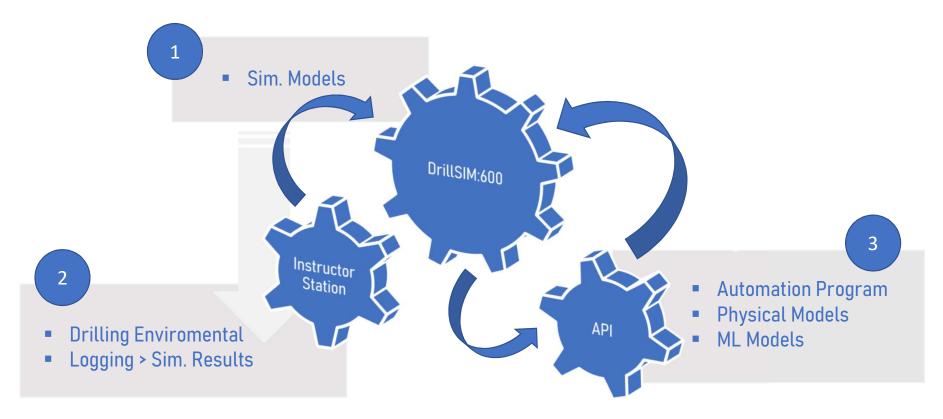
Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Research Objectives

- Project: Optimization of geothermal drilling operations through real-time advance simulation
- Research purpose: Create realistic drilling environments to simulate and execute complex drilling processes in real-time
- Research scope: a certain section of a drilled well which is simulated in the advanced DrillSIM:600 Training Simulator

Methodology – Software Simulator at DSC

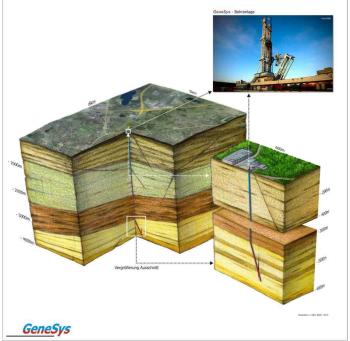
(Instructor Station)



(Student/Drillers Chair)

Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Methodology - Workflow

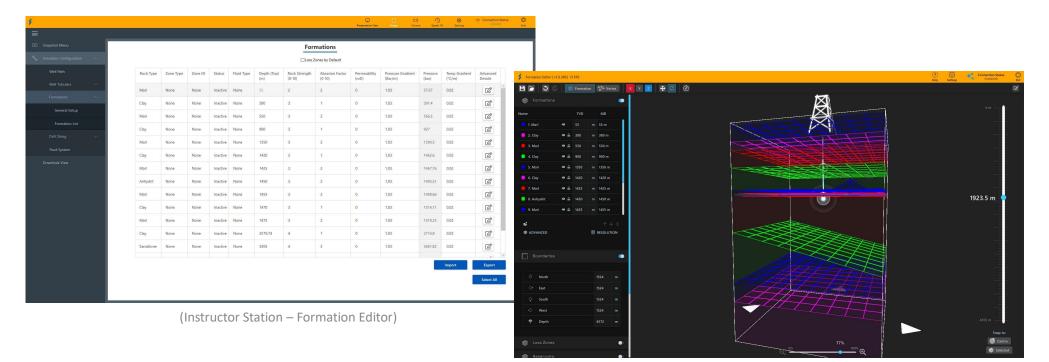

Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Offenburg -

Methodology – Well Information

- Wellbore Information: GeneSys
- Location: GEOZENTRUM Hannover
- Target Formation: Mittlerer Buntsandstein
- Type: Geothermal Well
- **Depth: 3.901 m**
- Simulated section: 1542 1562 m

(https://www.genesys-hannover.de/Genesys/DE/Home/genesys_node.html)


Offenburg -Ortenau

Methodology – Setting Simulation Environment

Formation

(Instructor Station – Formation Editor)

Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

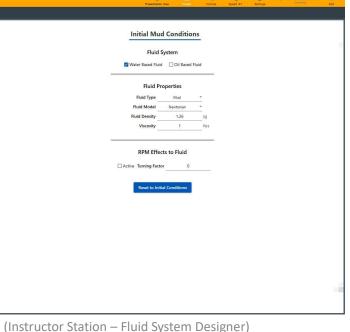
Methodology – Setting Simulation Environment

• Well Designer & Downhole View

Main Well Path				IV	/lain Wel	I Path								Presentation View Present	(D)
Target Well Path				Default Hole Size	311	mr	m							Downhole View	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				RKB	55	m						TVD	MD	Downhole view	T
Add Well Path +	↑ Measure Depth (m)	Inclination	Azimuth (?)	Vertical Depth (m)	Northing (m)	Easting (m)	V-Section (m)	Dogleg (°/30m)	Turn Rate (°/30m)	Build Rate (°/30m)	Hole Depth Shoe Depth	1536.83 m 1174.9 m	1537 m 1175 m		
· · · · ·	0	D	0	0	0	0	0	0	0	0	Bit Depth	1530.25 m	1530.42 m		No. and as
	55	0	0	55	0	0	0.94	0.38	271.04	0.38		Under / Over Balance Bottom Hole Pressure	-1391.6 bar 190.39 bar		
	345	0.37	262.01	345	-0.13	-0.93	0.18	4.38	-60.45	4.35	Kh (Permeability Milli Darc	v x Exposed Reservoir Height)	0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	365	0.66	257.98	365	-0.16	-1.1	0.16	5.7	-10.2	-5,7		Influx Rate (Drowndown) Total Kick Volume	0 L/min 0 m ^e		· • • • • •
ties	385	0.28	257.3	385	-0.2	-1.26	0.02	3.69	-726.5	-1.33		Total Influx from Formation	0 m ^s		and the second
	388.6	0.26	248.58	388.6	-0.2	-1.28	0.02	3.5	-726.5	-1.33		sure to Bullheading Reservoir ating Leak Off at Casing Shoe	0 bar 72.26 bar		
	392.2	0.25	239.86	392.2	-0.21	-1.29	0.02	3.32	-726.5	-1.33		ating Fracture at Casing Shoe	152.14 bar	X X	100 A
	395.8	0.23	231.15	395.8	-0.22	-1.31	0.01	3.13	-726.5	-1.33	Differential Pressure to	Initiating Losses at Loss Zone	0 bar		
	399.4	0.22	222.43	399.4	-0.23	-1.32	0.01	2.95	-726.5	-1.33					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	403	0.2	213.71	403	-0.24	-1.33	0.02	3.19	510.16	2.53					
	407.75	0.24	221.79	407.75	-0.25	-1.34	0.02	3.42	\$10.16	2.53					
	412.5	0.28	229.86	412.5	-0.27	-1.35	0.02	3.67	510.16	2.53					
	417.25	0.32	237.94	417.25	-0.28	-1.37	0.03	3.94	510.16	2.53				TITA TOTAL ANALYZE	THE PARTY APPLICATION
	422	0.36	246.02	422	-0.29	-1.4	0.16	3.79	137.05	3.63					19 19 19 19 19 19 19 19 19 19 19 19 19 1
	441	0.59	254.7	441	-0.34	-1.55	0.19	1.12	-80.37	-0.79					
	460	0.54	249.61	459,99	-0.4	-1.72	0.2	2.28	122.53	1.89					
	Calliper Data	Well Des	igner					1	Import	Export					
									Paste	Select All					

(Instructor Station – Downhole View)

Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

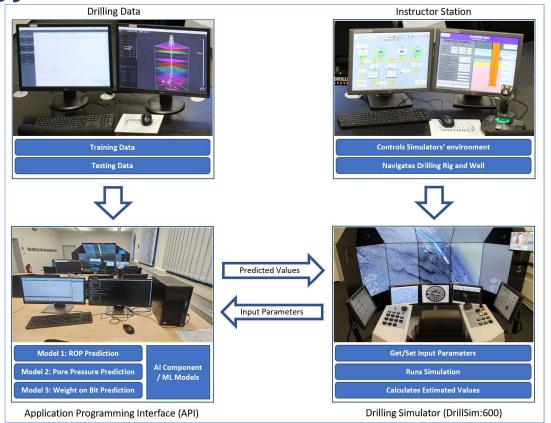

Methodology – Setting Simulation Environment


Initial Mud Condition

Active Tank

- Fluid System
- BHA & Drillpipe

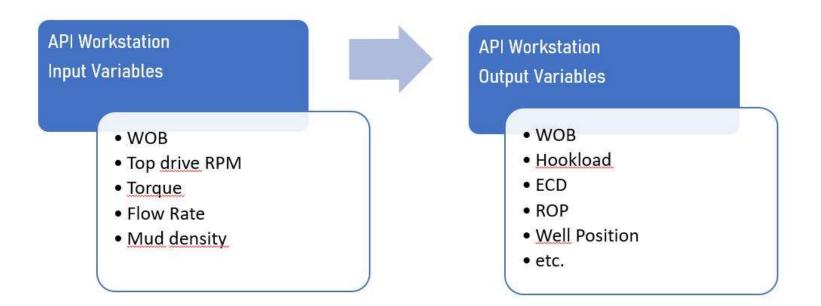
	א טו וווויוויש													Reserve Tank				
		Fo	Formations 🗸			Temperature System												
											C Presentation View	C) Frazen Volume		© Settings	÷ 0	consistent	5 O Ext	
								Botto	om Hole A	ssembly								
	Component	Length	Single Length	Quantity	OD	ID	Weight	Tot. Weight	Yield Press.	Tensile Str.	Collapse Press.	Joint Length	Joint OD	Joint ID	Config	Move	Delete	
		(m)	(m)		(mm)	(mm)	(kg/m)	(kg)	(bar)	(kg)	(bar)	(cm)	(mm)	(mm)			Row	
	HW Drill Pipe	186.4	9.32	20	127	76.2	31.82	5931.48	9999.99	999999	9999.99	0	0	0		-	\times	
	Cross Over	1.09	1.09	1	209.5	73.66	0	0	0	0	0	D	0	D		•	×	
Drill String	Drill Collar	9.4	9.4	1	209.5	73.66	118.57	1114.59	9999.99	999999	9999.99	0	0	0		•	×	
Drill Pipe	Hydraulic Jar	7	7	1	203.2	73.66	0	0	0	0	0	D	0	0	-	•	×	
вна	Drill Collar	65.17	9.31	7	209.5	73.66	118.57	7727.46	9999.99	999999	9999.99	0	0	0		•	×	
	Float Sub	1.98	1.98	1	203.2	76.2	0	0	0	0	0	0	0	0		•	×	
String Properties	Stabiliser	2.19	2.19	1	300	73.66	0	0	0	0	0	D	0	D		•	×	
	Float Sub	1.58	1.58	1	209.5	132.1	0	0	0	0	0	D	0	D		•	×	
	MWD	8.9	8.9	3	209.5	10	0	0	0	0	0	D	0	0			×	
	Stabiliser	1.41	1.41	i	300	73.6	0	0	0	0	0	D	0	D			×	
	PD Motor	10	10	1	203.2	10	0	0	0	0	0	0	0	0			×	
	DrillBit PDC	0.37	0.37	1	311	10	0	0	0	0	0	0	0	0			X	
	Total BHA Length	29	15.49 m	Total	orill String L	enath	1532,46	m									~	



Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Methodology – API Workstation

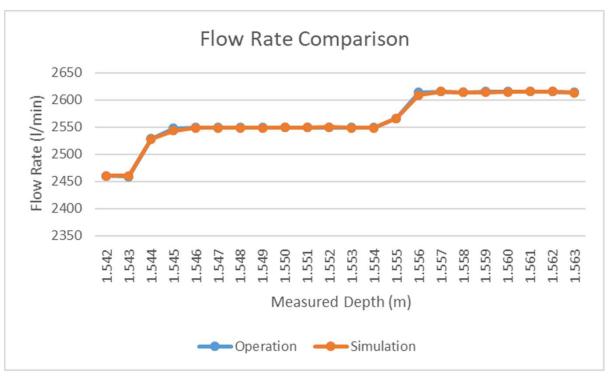
(Workflow between API Workstation and DrillSIM:600)


Harits Alkatiri – 01.03.2024

Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

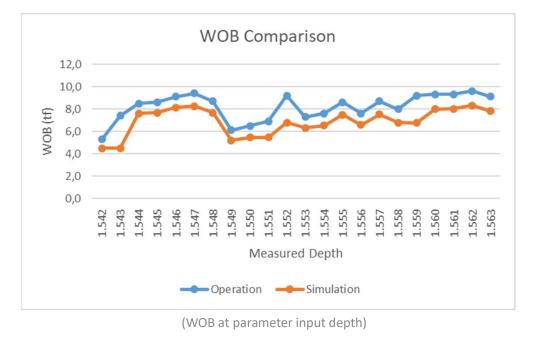
Methodology – Communication with Simulator

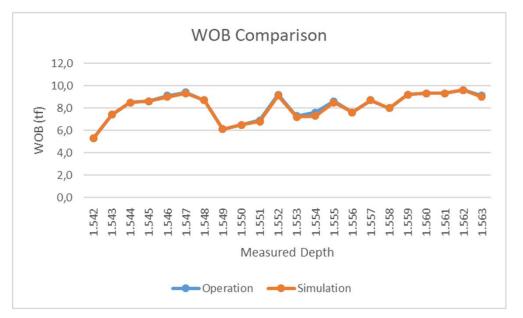
Simulation and Evaluation


- Flow Rate
- Weight on bit
- Torque
- ROP

Messe Offenburg – Ortenau

Flow rate

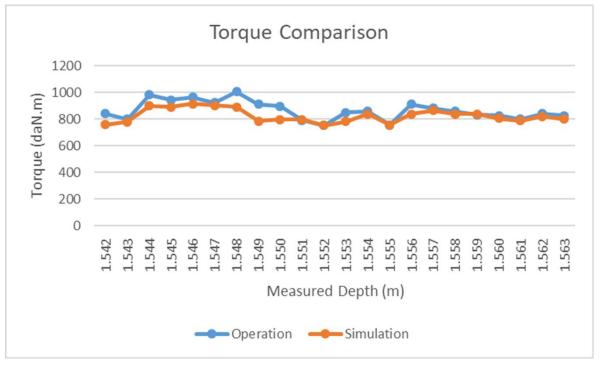

Offenburg-



(Flow Rate comparison at parameter input depth)

Weight on bit

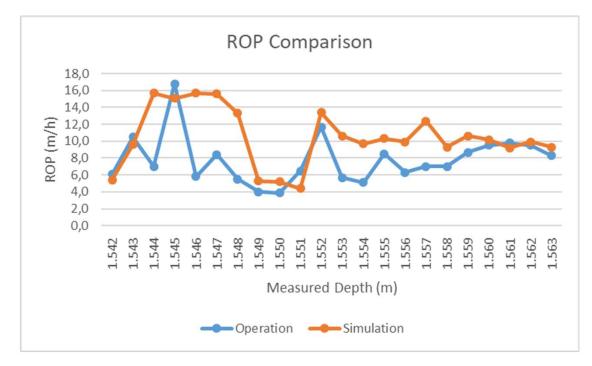
(WOB at parameter input depth with iteration time)


Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Messe Offenburg -

Torque

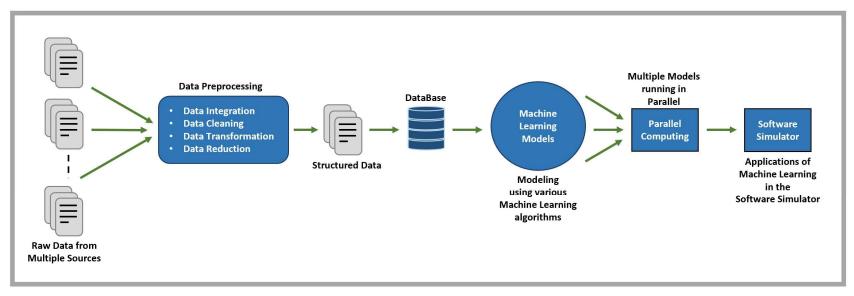
Offenburg-



(Torque comparison at parameter input depth)

ROP

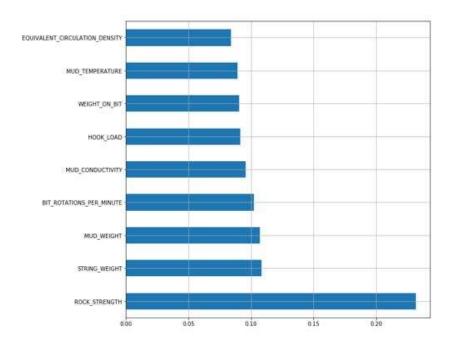
Messe Offenburg – Ortenau



(ROP comparison at parameter input depth)

Harits Alkatiri – 01.03.2024

Machine Learning Application

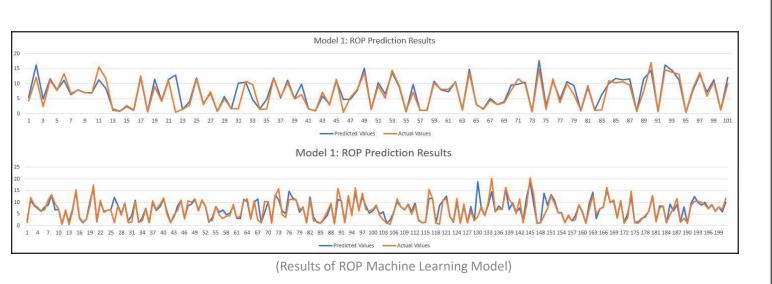


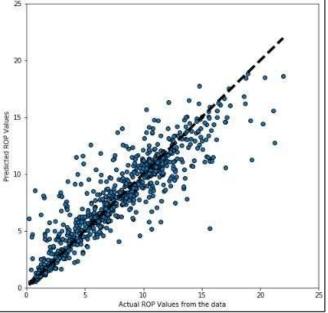
(Machine Learning Application Workflow)

Messe Offenburg -

Machine Learning Model Application – ROP

Features Importance
8.40 %
8.90 %
9.04 %
9.12 %
9.59 %
10.25 %
10.72 %
10.82 %
23.17 %




Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Messe Offenburg – Ortenau

ROP – Machine Learning Model

(Comparison between Predicted and Actual Values of ROP)

Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Offenburg -Ortenau

Conclusions and Future Work

- A wellbore was recreated and a section of the wellbore was successfully simulated
- An automated program was created to utilize the drilling parameters inputs from the original operation
- The scenario drilling simulation outputs were able to follow the same trends and patterns as the actual drilling operation
- Improve the automation program to simulate drilling a complete wellbore
- Improve simulation results by implementing more machine learning and physical models

DSC

Drilling Simulator Celle

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Realistic automated scenario drilling through implementation and validation of physical and machine learning models using a real-time drilling simulator

Harits Alkatiri - 01.03.2024