Digital Twin of Geothermal Assets Assisting the Production and Operational Decisions P. Shoeibi Omrani^{1,2}, R. Octaviano¹, J. Poort¹, D. Palochis¹, L. Hashemi¹ H. Dashtaki Hesari¹ 1 Heat Transfer and Fluid Dynamics, TNO, The Netherlands 2 Wageningen University and Research Email: pejman.shoeibiomrani@tno.nl Presentation for GeoTHERM 2024 ## **Motivation** - Growth in geothermal assets in NL and worldwide - Increasingly complex production and operation - Responding to heat demand with a minimum environmental footprint - Complex operational challenges - Planned and unplanned maintenance - Learning curve for operators needs to be accelerated Need for a centralized, fast, optimum and robust operational decisions employing data in the life cycle of a plant From Kervevan et al., 2014 # **Motivation** # **Vision: Optimum Operational Decisions** - Towards an intelligent decision support framework - Increase production efficiency - Reduce risks and emissions - Accelerate the learning curve in the sector - Enabling the knowledge transfer from experienced operators to young operators # **Development and Demonstration Projects** - A national growth fund project in the Netherlands to demonstrate GEMINI in geothermal systems and ATES - 3 sites, Live demonstrations - Monitoring the implementation for > 6 months - Full value chain onboard - An Open-Access tool to be available in 2025 - Open-source libraries to be released in 2026 # **Digital Twin of Geothermal Assets** - A virtual representation that serves as the real-time digital counterpart of a physical object or process (NASA) - Dynamic processes, dynamic system changing overtime, variable demand, uncertainties in subsurface and surface processes - Why? Minimize maintenance cost, maximize production, Reduce environmental footprint, ... Physical object Static and real-time data **Mechanisms** Data exchange Information, actions and feedbacks ### **Digital object** ## **GEMINI** - A flexible web-based framework for real-time monitoring, forecasting and optimization - Act as an assistant to the operators of geothermal and ATES systems - Centralized location to access all the (updated) data - Performance, integrity and environmental footprint monitoring - Critical processes (scaling, erosion, corrosion) - Production and operation advisory system # **Case studies** - Three sites: - Trias Westland - HAL - GENOVATIVE Storage well at RCSG • The functionalities to be developed and demonstrated in the project: # Text data analysis Predictive maintenance Well integrity management # **Subsurface** integration # **Example: Predictive maintenance** A critical equipment in geothermal assets is ESP; - Sometimes relatively <u>short lifetime</u> (~ 1-2 years) - ESP operational envelope should accommodate with production variations (P, rates, clogging,...) - Lack of <u>proactive monitoring</u> of system performance during operation - High <u>costs</u> associated with <u>ESP inspection</u> and <u>replacement</u> <u>Suboptimum operation</u> of the ESP caused by lack of proper monitoring and operator errors Annual OPEX of each component, operator 1 # **Workflow for Predictive Maintenance** # **Example: Predictive maintenance** Early signs of degradation visible 6 months prior to the failure. # Virtual Platform - Operation Scenarios Evaluation - Optimize geothermal operating condition parameters - Maximizing the following objective functions: - Total produced power - Minimum power consumption - Minimum CO2 emission ## **Faster Access to Documents** - On average 20% of time is spent to search for the correct document - Shift and maintenance reports - Tests reports - Product catalogues and specifications - The rise in Large Language Model (LLM) can significantly speed up the process - ChatGeoPT functionality in GEMINI: - Connecting to a large publication and article database - Connecting to company internal documents - Provide references for the provided responses # Why Open-Source? | Project goals | Why open source? | |---|---| | Improvement efficiency, flexibility and safety | Efficient tool development for a growing market | | Efficient & uniform data for regulators and other stakeholders benchmarking and for collective learning monitoring system performance and emission | Common set of public (open source) models for the calculation of key parameters | | Accelerate sector learning | Transparent and trustworthy workflows
which are reviewed by the whole
community | # Summary - Digital twins can improve the operation of geothermal assets aiming at saving cost, increasing production and reduce downtime. - A workflow is proposed to be demonstrated and being made open-source for the geothermal assets (direct use, heating). - Further extension to power systems is possible. - You can already be part of the community. # innovation for life Acknowledgement: Aardyn, HVC, Well Engineering Partners, Helin, Geothermie Nederland, The Netherlands Enterprise Agency (RVO)